This special provision was developed by the Central Bureau of Materials to update the physical properties of geotextile fabric for silt filter fence, ground stabilization, and riprap filter fabric in accordance with AASHTO specifications. It has been revised to include below grade inlet filters as well as above grade (fitted and non-fitted) inlet filters.

This special provision should be inserted into contracts requiring perimeter erosion barrier, inlet and pipe protection, inlet filters, ground stabilization, or filter fabric.

The districts should include the BDE Check Sheet marked with the applicable special provisions for the April 24, 2020 and subsequent lettings. The Project Coordination and Implementation Section will include a copy in the contract.

This special provision will be available on the transfer directory January 10, 2020.
Revise Article 280.02(m) and add Article 280.02(n) so the Standard Specifications read:

“(m) Above Grade Inlet Filter (Fitted) .. 1081.15(j)
(n) Above Grade Inlet Filter (Non-Fitted) ... 1081.15(k)”

Revise the last sentence of the first paragraph in Article 280.04(c) of the Standard Specifications to read:

“The protection shall be constructed with hay or straw bales, silt filter fence, above grade inlet filters (fitted and non-fitted), or inlet filters.

Revise the first sentence of the second paragraph in Article 280.04(c) of the Standard Specifications to read:

“When above grade inlet filters (fitted and non-fitted) are specified, they shall be of sufficient size to completely span and enclose the inlet structure.”

Revise Article 1080.02 of the Standard Specifications to read:

“1080.02 Geotextile Fabric. The fabric for silt filter fence shall consist of woven fabric meeting the requirements of AASHTO M 288 for unsupported silt fence.

The fabric for ground stabilization shall consist of woven yarns or nonwoven filaments of polyolefins or polyesters. Woven fabrics shall be Class 2 and nonwoven fabrics shall be Class 1 according to AASHTO M 288.

The physical properties for silt fence and ground stabilization fabrics shall be according to the following.

<table>
<thead>
<tr>
<th>PHYSICAL PROPERTIES</th>
<th>Silt Fence Woven 1/</th>
<th>Ground Stabilization Woven 2/</th>
<th>Ground Stabilization Nonwoven 2/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grab Strength, lb (N) 3/</td>
<td>123 (550) MD 101 (450) XD</td>
<td>247 (1100) min. 4/</td>
<td>202 (900) min. 4/</td>
</tr>
<tr>
<td>ASTM D 4632</td>
<td>4/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elongation/Grab Strain, % 4/</td>
<td>49 max.</td>
<td>49 max.</td>
<td>50 min.</td>
</tr>
<tr>
<td>ASTM D 4632</td>
<td>4/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trapezoidal Tear Strength, lb (N)</td>
<td>--</td>
<td>90 (400) min.</td>
<td>79 (350) min.</td>
</tr>
<tr>
<td>ASTM D 4533</td>
<td>4/</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Puncture Strength, lb (N)
ASTM D 6241 4/
\[-- \quad 494 \ (2200) \text{ min.} \quad 433 \ (1925) \text{ min.} \]

Apparent Opening Size, Sieve No. (mm)
ASTM D 4751 5/
\[30 \ (0.60) \text{ max.} \quad 40 \ (0.43) \text{ max.} \quad 40 \ (0.43) \text{ max.} \]

Permittivity, sec^{-1}
ASTM D 4491
\[0.05 \text{ min.} \]

Ultraviolet Stability, % retained strength after 500 hours of exposure
ASTM D 4355
\[70 \text{ min.} \quad 50 \text{ min.} \quad 50 \text{ min.} \]

1/ NTPEP results or manufacturer’s certification to meet test requirements.

2/ NTPEP results to meet test requirements. Manufacturer shall have public release status and current reports on laboratory results in Test Data of NTPEP’s DataMine.

3/ MD = Machine direction. XD = Cross-machine direction.

4/ Values represent the minimum average roll value (MARV) in the weaker principle direction, MD or XD.

5/ Values represent the maximum average roll value.”

Revise Article 1080.03 of the Standard Specifications to read:

“1080.03 Filter Fabric. The filter fabric shall consist of woven yarns or nonwoven filaments of polyolefins or polyesters. Woven fabrics shall be Class 3 for riprap gradations RR 4 and RR 5, and Class 2 for RR 6 and RR 7 according to AASHTO M 288. Woven slit film geotextiles (i.e. geotextiles made from yarns of a flat, tape-like character) shall not be permitted. Nonwoven fabrics shall be Class 2 for riprap gradations RR 4 and RR 5, and Class 1 for RR 6 and RR 7 according to AASHTO M 288. After forming, the fabric shall be processed so that the yarns or filaments retain their relative positions with respect to each other. The fabric shall be new and undamaged.

The filter fabric shall be manufactured in widths of not less than 6 ft (2 m). Sheets of fabric may be sewn together with thread of a material meeting the chemical requirements given for the yarns or filaments to form fabric widths as required. The sheets of filter fabric shall be sewn together at the point of manufacture or another approved location.

The filter fabric shall be according to the following.

<table>
<thead>
<tr>
<th>PHYSICAL PROPERTIES 1/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gradation Nos.</td>
</tr>
<tr>
<td>RR 4 & RR 5</td>
</tr>
<tr>
<td>Woven</td>
</tr>
<tr>
<td>Woven</td>
</tr>
<tr>
<td>Physical Property</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Grab Strength, lb (N) ASTM D 4632 2/</td>
</tr>
<tr>
<td>Elongation/Grab Strain, % ASTM D 4632 2/</td>
</tr>
<tr>
<td>Trapezoidal Tear Strength, lb (N) ASTM D 4533 2/</td>
</tr>
<tr>
<td>Puncture Strength, lb (N) ASTM D 6241 2/</td>
</tr>
<tr>
<td>Ultraviolet Stability, % retained strength after 500 hours of exposure - ASTM D 4355</td>
</tr>
</tbody>
</table>

1/ NTPEP results to meet test requirements. Manufacturer shall have public release status and current reports on laboratory results in Test Data of NTPEP’s DataMine.

2/ Values represent the minimum average roll value (MARV) in the weaker principle direction [machine direction (MD) or cross-machine direction (XD)].

As determined by the Engineer, the filter fabric shall meet the requirements noted in the following after an onsite investigation of the soil to be protected.

<table>
<thead>
<tr>
<th>Soil by Weight (Mass) Passing the No. 200 sieve (75 µm), %</th>
<th>Apparent Opening Size, Sieve No. (mm) - ASTM D 4751 1/</th>
<th>Permittivity, sec⁻¹ ASTM D 4491</th>
</tr>
</thead>
<tbody>
<tr>
<td>49 max.</td>
<td>60 (0.25) max.</td>
<td>0.2 min.</td>
</tr>
<tr>
<td>50 min.</td>
<td>70 (0.22) max.</td>
<td>0.1 min.</td>
</tr>
</tbody>
</table>

1/ Values represent the maximum average roll value.”

Revise Article 1081.15(h)(3)a of the Standard Specifications to read:

“a. Inner Filter Fabric Bag. The inner filter fabric bag shall be constructed of woven yarns or nonwoven filaments made of polyolefins or polyesters with a minimum silt and debris capacity of 2.0 cu ft (0.06 cu m). Woven fabric shall be Class 3 and nonwoven fabric shall be Class 2 according to AASHTO M 288. The fabric bag shall be according to the following.

<table>
<thead>
<tr>
<th>PHYSICAL PROPERTIES</th>
<th>Woven</th>
<th>Nonwoven</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grab Strength, lb (N) ASTM D 4632 1/</td>
<td>180 (800) min.</td>
<td>157 (700) min.</td>
</tr>
<tr>
<td>Elongation/Grab Strain, % ASTM D 4632 1/</td>
<td>49 max.</td>
<td>50 min.</td>
</tr>
<tr>
<td>Trapezoidal Tear Strength, lb (N) ASTM D 4533 1/</td>
<td>67 (300) min.</td>
<td>56 (250) min.</td>
</tr>
</tbody>
</table>
Puncture Strength, lb (N)
ASTM D 6241 \(^{1/}\) | 370 (1650) min. | 309 (1375) min.

Apparent Opening Size, Sieve No. (mm)
ASTM D 4751 \(^{2/}\) | 60 (0.25) max.

Permittivity, sec\(^{-1}\)
ASTM D 4491 | 2.0 min.

Ultraviolet Stability, % retained strength after 500 hours of exposure – ASTM D 4355 | 70 min.

1/ Values represent the minimum average roll value (MARV) in the weaker principle direction [machine direction (MD) or cross-machine direction (XD)].

2/ Values represent the maximum average roll value.”

Revise Article 1081.15(i)(1) of the Standard Specifications to read:

“(i) Urethane Foam/Geotextile. Urethane foam/geotextile shall be triangular shaped having a minimum height of 10 in. (250 mm) in the center with equal sides and a minimum 20 in. (500 mm) base. The triangular shaped inner material shall be a low density urethane foam. The outer geotextile fabric cover shall consist of woven yarns or nonwoven filaments made of polyolefins or polyesters placed around the inner material and shall extend beyond both sides of the triangle a minimum of 18 in. (450 mm). Woven filter fabric shall be Class 3 and nonwoven filter fabric shall be Class 2 according to AASHTO M 288.

(1) The geotextile shall meet the following properties.

<table>
<thead>
<tr>
<th>PHYSICAL PROPERTIES</th>
<th>Woven</th>
<th>Nonwoven</th>
</tr>
</thead>
</table>
| Grab Strength, lb (N)
ASTM D 4632 \(^{1/}\) | 180 (800) min. | 157 (700) min.
| Elongation/Grab Strain, %
ASTM D 4632 \(^{1/}\) | 49 max. | 50 min.
| Trapezoidal Tear Strength, lb (N)
ASTM D 4533 \(^{1/}\) | 67 (300) min. | 56 (250) min.
| Puncture Strength, lb (N)
ASTM D 6241 \(^{1/}\) | 370 (1650) min. | 309 (1375) min.
| Apparent Opening Size, Sieve No. (mm)
ASTM D 4751 \(^{2/}\) | 30 (0.60) max.
| Permittivity, sec\(^{-1}\)
ASTM D 4491 | 2.0 min.
| Ultraviolet Stability, % retained strength after 500 hours of exposure – ASTM D 4355 | 70 min.

1/ Values represent the minimum average roll value (MARV) in the weaker principle direction [machine direction (MD) or cross-machine direction (XD)].
Add the following to Article 1081.15(i) of the Standard Specifications.

“(3) Certification. The manufacturer shall furnish a certificate with each shipment of urethane foam/geotextile assemblies stating the amount of product furnished and that the material complies with these requirements.”

Revise the title and first sentence of Article 1081.15(j) of the Standards Specifications to read:

“(j) Above Grade Inlet Filters (Fitted). Above grade inlet filters (fitted) shall consist of a rigid polyethylene frame covered with a fitted geotextile filter fabric.”

Revise Article 1081.15(j)(2) of the Standard Specifications to read:

(2) Fitted Geotextile Filter Fabric. The fitted geotextile filter fabric shall consist of woven yarns or nonwoven filaments made of polyolefins or polyesters. Woven filter fabric shall be Class 3 and nonwoven filter fabric shall be Class 2 according to AASHTO M 288. The filter shall be fabricated to provide a direct fit to the frame. The top of the filter shall integrate a coarse screen with a minimum apparent opening size of 1/2 in. (13 mm) to allow large volumes of water to pass through in the event of heavy flows. The filter shall have integrated anti-buoyancy pockets capable of holding a minimum of 3.0 cu ft (0.08 cu m) of stabilization material. Each filter shall have a label with the following information sewn to or otherwise permanently adhered to the outside: manufacturer’s name, product name, and lot, model, or serial number. The fitted geotextile filter fabric shall be according to the table in Article 1081.15(h)(3)a above.

Add Article 1081.15(k) to the Standard Specifications to read:

“(k) Above Grade Inlet Filters (Non-Fitted). Above grade inlet filters (non-fitted) shall consist of a geotextile fabric surrounding a metal frame. The frame shall consist of either a) a circular cage formed of welded wire mesh, or b) a collapsible aluminum frame, as described below.

(1) Frame Construction.

a) Welded Wire Mesh Frame. The frame shall consist of 6 in. x 6 in. (150 mm x 150 mm) welded wire mesh formed of #10 gauge (3.42 mm) steel conforming to ASTM A 185. The mesh shall be 30 in. (750 mm) tall and formed into a 42 in. (1.05 m) minimum diameter cylinder.

b) Collapsible Aluminum Frame. The collapsible aluminum frame shall consist of grade 6036 aluminum. The frame shall have anchor lugs that attach it to the inlet grate, which shall resist movement from water and debris. The collapsible joints
of the frame shall have a locking device to secure the vertical members in place, which shall prevent the frame from collapsing while under load from water and debris.

(2) Geotextile Fabric. The geotextile fabric shall consist of woven yarns or nonwoven filaments made of polyolefins or polyesters. The woven filter fabric shall be a Class 3 and the nonwoven filter fabric shall be a Class 2 according to AASHTO M 288. The geotextile fabric shall be according to the table in Article 1081.15(h)(3)a above.

(3) Geotechnical Fabric Attachment to the Frame.

a) Welded Wire Mesh Frame. The woven or nonwoven geotextile fabric shall be wrapped 3 in. (75 mm) over the top member of a 6 in. x 6 in. (150 mm x 150 mm) welded wire mesh frame and secured with fastening rings constructed of wire conforming to ASTM A 641, A 809, A 370, and A 938 at 6 in. (150 mm) on center. The fastening rings shall penetrate both layers of geotextile and securely close around the steel mesh. The geotextile shall be secured to the sides of the welded wire mesh with fastening rings at a spacing of 1 per sq ft (11 per sq m) and securely close around a steel member.

b) Collapsible Aluminum Frame. The woven or nonwoven fabric shall be secured to the aluminum frame along the top and bottom of the frame perimeter with strips of aluminum secured to the perimeter member, such that the anchoring system provides a uniformly distributed stress throughout the geotechnical fabric.

(4) Certification. The manufacturer shall furnish a certificate with each shipment of above grade inlet filter assemblies stating the amount of product furnished and that the material complies with these requirements.”