Regional Engineers
Maureen M. Addis
Special Provision for Dowel Bar Inserter
September 29, 2017

This special provision was developed by the Bureau of Construction to provide an alternate method for installation of dowel bars in jointed PCC pavement. The special provision has been revised to define the wheelpath, revise the joint score formula, and make minor corrections.

This special provision should be inserted into contracts requiring jointed PCC pavement with a thickness of \(\geq 7.0 \text{ in. (175 mm)} \).

The districts should include the BDE Check Sheet marked with the applicable special provisions for the January 19, 2018 and subsequent lettings. The Project Development and Implementation Section will include a copy in the contract.

This special provision will be available on the transfer directory September 29, 2017.

80378m
Add the following to Article 420.03 of the Standard Specifications.

“(l) Mechanical Dowel Bar Inserter ...1103.20”

Revise the first paragraph of Article 420.05(b)(1) of the Supplemental Specifications to read:

“Preformed or Drilled Holes. If applicable, the tie bars shall be installed after the dowel bars have been tested with the MIT Scan-2 device according to Article 420.05(c)(2)b.2. The tie bars shall be installed with a nonshrink grout or chemical adhesive providing a minimum pull-out strength as follows.”

Revise Article 420.05(c) of the Standard Specifications to read:

“(c) Transverse Contraction Joints. Transverse contraction joints shall consist of planes of weakness created by sawing grooves in the surface of the pavement and shall include load transfer devices consisting of dowel bars. Transverse contraction joints shall be according to the following.”

Revise Article 420.05(c)(2) of the Standard Specifications to read:

“(2) Dowel Bars. Dowel Bars shall be installed parallel to the centerline of the pavement and parallel to the proposed pavement surface. Installation shall be according to one of the following methods.

a. Dowel Bar Assemblies. The assembly shall act as a rigid unit with each component securely held in position relative to the other members of the assembly. The entire assembly shall be held securely in place by means of nails which shall penetrate the stabilized subbase. At least ten nails shall be used for each 10, 11, or 12 ft (3, 3.3, or 3.6 m) section of assembly.

Metal stakes shall be used instead of nails, with soil or granular subbase. The stakes shall loop over or attach to the top parallel spacer bar of the assembly and penetrate the subgrade or subbase at least 12 in. (300 mm).

At the location of each dowel bar assembly, the subgrade or subbase shall be reshaped and re-tamped when necessary.

Prior to placing concrete, any deviation of the dowel bars from the correct horizontal or vertical alignment (horizontal skew or vertical tilt) greater than 3/8 in. in 12 in (9 mm in 300 mm) shall be corrected and a light coating of oil shall be uniformly applied to all dowel bars.
Care shall be exercised in depositing the concrete at the dowel bar assemblies so the horizontal and vertical alignment will be retained.

b. Dowel Bar Insertion. The dowel bars may be placed in the pavement slab with a mechanical dowel bar inserter (DBI) attached to a formless paver for pavements ≥ 7.0 in. (175 mm) in thickness. A light coating of oil shall be uniformly applied to all dowel bars.

The DBI shall insert the dowel bars with vibration into the plastic concrete after the concrete has been struck off and consolidated without deformation of the slab. After the bars have been inserted, the concrete shall be refinished and no voids shall exist around the dowel bars. The forward movement of the paver shall not be interrupted by the inserting of the dowel bars.

The location of each row of dowel bars shall be marked in a manner to facilitate where to insert the bars, and where to saw the transverse joint.

1. Placement Tolerances for Dowel Bars. The DBI shall place the dowel bars in the concrete pavement within the following tolerances.

(a.) Longitudinal Translation (Mislocation). Longitudinal translation (mislocation) shall be defined as the position of the center of the dowel bar along the longitudinal axis, in relation to the sawed joint.

The quality control tolerance for longitudinal translation shall not exceed 2.0 in (50 mm). If this tolerance is exceeded, adjustments shall be made to the paving operation.

Any joint having two or more dowel bars with an embedment length less than 4.0 in. (100 mm) within 12 in. (300 mm) of the same wheelpath will be considered unacceptable. The left and right wheelpaths shall be determined by excluding the middle 2.5 ft (0.8 m) of the pavement lane, and by excluding the outer 1.0 ft (0.3 m) measured from each pavement lane edge. Any joint having an average dowel bar embedment length less than 5.25 in. (130 mm) will also be considered unacceptable. Embedment length shall be defined as the length of dowel bar embedded on the short side of the sawed joint. An unacceptable joint shall be replaced with a minimum of 6 ft (1.8 m) of pavement centered over the joint according to Section 442 for Class B patches.

(b.) Horizontal Translation (Mislocation). Horizontal translation (mislocation) shall be defined as the difference in the actual dowel bar location parallel to the longitudinal or edge joint from its theoretical position as shown on the plans.
The quality control tolerance for horizontal translation shall not exceed 2.0 in. (50 mm). If this tolerance is exceeded, adjustments shall be made to the paving operation.

Any joint having a dowel bar with a translation greater than 4.0 in. (100 mm) will be considered unacceptable, but may remain in place unless the Engineer determines the joint will not function. If the joint is unable to remain in place, the joint shall be replaced with a minimum of 6 ft (1.8 m) of pavement centered over the joint according to Section 442 for Class B patches.

(c.) Vertical Translation (Mislocation). Vertical translation (mislocation) shall be defined as the difference in the vertical position of the dowel bar relative to the theoretical midpoint of the slab.

The quality control tolerance for vertical translation shall be as shown in the following table. If these tolerances are exceeded, adjustments shall be made to the paving operation.

<table>
<thead>
<tr>
<th>Pavement Thickness</th>
<th>Dowel Bar Diameter</th>
<th>Vertical Translation Tolerance Above Midpoint</th>
<th>Vertical Translation Tolerance Below Midpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥7 in. to <8 in. (≥175 mm to <200 mm)</td>
<td>1.25 in. (31 mm)</td>
<td>0.25 in. (6 mm)</td>
<td>0.5 in. (13 mm)</td>
</tr>
<tr>
<td>≥8 in. to <9 in. (≥200 mm to <225 mm)</td>
<td>1.50 in. (38 mm)</td>
<td>0.25 in. (6 mm)</td>
<td>0.5 in. (13 mm)</td>
</tr>
<tr>
<td>≥9 in. to <10 in. (≥225 mm to <250 mm)</td>
<td>1.50 in. (38 mm)</td>
<td>0.75 in. (19 mm)</td>
<td>0.75 in. (19 mm)</td>
</tr>
<tr>
<td>≥10 in. (≥250 mm)</td>
<td>1.50 in. (38 mm)</td>
<td>0.75 in. (19 mm)</td>
<td>1.0 in. (25 mm)</td>
</tr>
</tbody>
</table>

Any joint having a dowel bar with top concrete cover less than T/3, where T is slab thickness, will be considered unacceptable. Any joint having 2 or more dowel bars with bottom concrete cover less than 2.0 in. (50 mm) will also be considered unacceptable. An unacceptable joint shall be replaced with a minimum of 6 ft (1.8 m) of pavement according to Section 442 for Class B patches.

(d.) Vertical Tilt or Horizontal Skew (Misalignment). Vertical tilt or horizontal skew (misalignment) shall be defined as the difference in position of the dowel bar ends with respect to each other. Vertical tilt is measured in the vertical axis whereas horizontal skew is measured in the horizontal axis. Misalignment shall be measured in terms of a joint score. The joint score shall be defined as the degree of misalignment evaluated for a single
transverse joint for each lane of pavement. The joint score shall be determined as follows:

\[\text{Joint Score} = \left(1 + \left(\frac{x}{x-n} \right) \sum_{i=1}^{x-n} W_i \right) \]

where:

\[W_i = \text{weighting factor (Table 1) for dowel } i \]
\[x = \text{number of dowels in a single joint} \]
\[n = \text{number of dowels excluded from the joint score calculation due to measurement interference} \]

Single Dowel Misalignment – The degree of misalignment applicable to a single dowel bar, calculated as:

\[\text{Single Dowel Misalignment} = \sqrt{(\text{Horizontal Skew})^2 + (\text{Vertical Tilt})^2} \]

<table>
<thead>
<tr>
<th>Single Dowel Bar Misalignment (SDM)</th>
<th>W, Weighting Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDM ≤ 0.6 in. (15 mm)</td>
<td>0</td>
</tr>
<tr>
<td>0.6 in. (15 mm) < SDM ≤ 0.8 in. (20 mm)</td>
<td>2</td>
</tr>
<tr>
<td>0.8 in. (20 mm) < SDM ≤ 1 in. (25 mm)</td>
<td>4</td>
</tr>
<tr>
<td>1 in. (25 mm) < SDM ≤ 1.5 in. (38 mm)</td>
<td>5</td>
</tr>
<tr>
<td>1.5 in. (38 mm) < SDM</td>
<td>10</td>
</tr>
</tbody>
</table>

The quality control tolerance for vertical tilt or horizontal skew shall not exceed 0.6 in. (15 mm). If the tolerance is exceeded for either one, adjustments shall be made to the paving operation.

Any joint having a dowel bar with a vertical tilt or horizontal skew greater than 1.5 in. (38 mm) shall be cut. If more than one dowel bar is required to be cut in the joint, the joint will be considered unacceptable and shall be replaced with a minimum of 6 ft (1.8 m) of pavement centered over the joint according to Section 442 for Class B patches.

Single dowel bar misalignment shall be controlled to provide the joint scores shown in the following table:

<table>
<thead>
<tr>
<th>Number of Dowel Bars in the Joint</th>
<th>Maximum Joint Score</th>
</tr>
</thead>
</table>
A joint score greater than the specified maximum will be considered locked. Three consecutive joints with a score greater than the specified maximum total score will all be considered unacceptable.

Three consecutive locked joints shall be corrected by selecting one joint and cutting a dowel bar. Preference shall be given to cutting a dowel bar within the middle 2.5 ft (0.8 m) of the pavement lane to avoid the wheelpaths. If none of the three locked joints will have a joint score less than or equal to the specified maximum after selecting one dowel bar to cut, one of the joints shall be replaced with a minimum of 6 ft (1.8 m) of pavement centered over the joint according to Section 442 for Class B patches.

(e.) For unacceptable work, the Contractor may propose alternative repairs for consideration by the Engineer.

2. Testing of Dowel Bar Placement. The placement of the dowel bars shall be tested within 24 hours of paving with a calibrated MIT Scan-2 device according to “Use of Magnetic Tomography Technology to Evaluate Dowel Placement” (Publication No. FHWA-IF-06-006) by the Federal Highway Administration.

A trained operator shall perform the testing, and all testing shall be performed in the presence of the Engineer. The device shall be calibrated to the type and size dowel bar used in the work according to the manufacturer’s instructions. Calibration documentation shall be provided to the Engineer prior to construction. The device shall be recalibrated and/or validate readings as required by the Engineer. The device may be utilized as a process control and make necessary adjustments to ensure the dowel bars are placed in the correct location.

(a.) Test Section. Prior to start of production paving, a test section consisting of 30 transverse joints shall be constructed. The test section may be performed on the actual pavement, but production paving shall not begin until an acceptable test section has been constructed. The test section will be considered acceptable when all of the following are met:

(1.) 90 percent of the dowel bars meet the quality control tolerance for longitudinal, horizontal, or vertical translation (mislocation);

(2.) 90 percent of the dowel bars meet the quality control tolerance for vertical tilt or horizontal skew deviation (misalignment); and

<table>
<thead>
<tr>
<th>Score</th>
<th>Total Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 5</td>
<td>4</td>
</tr>
<tr>
<td>≥ 5 but ≤ 9</td>
<td>8</td>
</tr>
<tr>
<td>> 9</td>
<td>12</td>
</tr>
</tbody>
</table>
(3.) none of the joints are considered unacceptable prior to a corrective measure for mislocation or misalignment.

If the test section fails, another test section consisting of 30 joints shall be constructed.

The test section requirement may be waived by the Engineer if the Contractor has constructed an acceptable test section and successfully used the DBI on a Department contract within the same calendar year.

(b.) Production Paving. After the test section is approved, production paving may begin. The mislocation and misalignment of each dowel bar for the first ten joints constructed, and every tenth joint thereafter, shall be tested.

If two consecutive days of paving result in 5 percent or more of the joints on each day being unacceptable prior to a corrective measure, production paving shall be discontinued and a new test section shall be constructed.

If any joint is found to be unacceptable prior to a corrective measure, testing of additional joints on each side of the unacceptable joint shall be performed until acceptable joints are found.

(c.) Test Report. Test reports shall be provided to the Engineer within two working days of completing each day’s testing. The test report shall include the following.

(1.) Contract number, placement date, county-route-section, direction of traffic, scan date, Contractor, and name of individual performing the tests.

(2.) Provide the standard report generated from the on-board printer of the imaging technology used for every dowel and joint measured.

(3.) For every dowel measured, provide the joint identification number, lane number and station, dowel bar number or x-location, direction of testing and reference joint location/edge location, longitudinal translation, horizontal translation, vertical translation, vertical tilt, and horizontal skew.

(4.) Identify each dowel bar with a maximum longitudinal, horizontal, or vertical translation that has been exceeded. Identify each dowel bar with a maximum vertical tilt or horizontal skew deviation that has been exceeded.
(5.) Joint Score Details: Provide the joint identification number, lane number, station, and calculated joint score for each joint.

(6.) Locked Joint Identification: Identify each joint with the maximum joint score >12 is exceeded.

(d.) Exclusions. Exclude the following from dowel bar mislocation and misalignment measurements.

(1.) Transverse construction joints (headers).

(2.) Dowel bars within 24 in. (610 mm) of metallic manholes, inlets, metallic castings, or other nearby or underlying steel reinforced objects.

(3.) The outside dowel bar when tie bars are installed with mechanical equipment in fresh concrete. For tie bar installations involving preformed or drilled holes, installation of the tie bar shall be performed after testing with the MIT Scan-2 device.

(4.) Joints located directly under high voltage power lines.

(5.) Subject to the approval of the Engineer, any other contributors to magnetic interference.

(e.) Deficiency Deduction. When the Contractor has cut 25 dowel bars to correct unacceptable joints, the Contractor shall be liable and shall pay to the Department a deficiency deduction of $500.00 for the cost of the bars. Thereafter, an additional deficiency deduction of $20.00 for each additional bar cut will be assessed.

Add the following to Section 1103 of the Standard Specifications.

“1103.20 Mechanical Dowel Bar Inserter. The mechanical dowel bar inserter (DBI) shall be self-contained and supported on the formless paver with the ability to move separately from the paver. The DBI shall be equipped with insertion forks along with any other devices necessary for finishing the concrete the full width of the pavement. The insertion forks shall have the ability to vibrate at a minimum frequency of 3000 VPM.”